Predicting dissolution patterns in variable aperture fractures: Evaluation of an enhanced depth-averaged computational model

نویسندگان

  • Russell L. Detwiler
  • Harihar Rajaram
چکیده

[1] Water-rock interactions within variable aperture fractures can lead to dissolution of fracture surfaces and local alteration of fracture apertures, potentially transforming the transport properties of fractures over time. Because fractures often provide dominant pathways for subsurface flow and transport, developing models that effectively quantify the role of dissolution on changing transport properties over a range of scales is critical to understanding potential impacts of natural and anthropogenic processes. Dissolution of fracture surfaces is controlled by surface reaction kinetics and transport of reactants and products to and from the fracture surfaces. We present a depth-averaged model of fracture flow and reactive transport that explicitly calculates local dissolution-induced alterations in fracture apertures. The model incorporates an effective mass transfer relationship that represents a smooth transition from reaction-limited dissolution to transport-limited dissolution. We evaluate the model through direct comparison to previously reported physical experiments in transparent analog fractures fabricated by mating an inert, transparent rough surface with a smooth single crystal of potassium dihydrogen phosphate (KDP). These experiments allowed direct measurement of fracture aperture during dissolution experiments using well-established light transmission techniques. Comparison of experiments and simulations at different flow rates demonstrates the relative impact of the dimensionless Peclet and Damkohler numbers on fracture dissolution and the ability of the computational model to simulate dissolution. Despite some discrepancies in the small-scale details of dissolution patterns the simulations predict the evolution of large-scale features quite well for the different experimental conditions. This suggests that the depth-averaged approach is useful for modeling fracture dissolution in the context of geological processes and applied problems such as CO2 sequestration and fracture acidization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonaqueous-phase-liquid dissolution in variable-aperture fractures: Development of a depth-averaged computational model with comparison to a physical experiment

Dissolution of nonaqueous-phase liquids (NAPLs) from variable-aperture fractures couples fluid flow, transport of the dissolved NAPL, interphase mass transfer, and the corresponding NAPL-water-interface movement. Each of these fundamental processes is controlled by fracture-aperture variability and entrapped-NAPL geometry. We develop a depth-averaged computational model of dissolution that inco...

متن کامل

Experimental observations of deformation caused by mineral dissolution in variable-aperture fractures

[1] Problems such as CO2 sequestration, petroleum production and nuclear waste isolation involve the potential for rock-water reactions. Mineral alteration resulting from reactive fluid flow can lead to significant changes to fracture transport properties. At depth, these processes are further influenced by stresses in the host rock. To quantitatively explore these coupled processes, we built a...

متن کامل

Dissolution of entrapped DNAPLs in variable aperture fractures: experimental data and empirical model.

An appreciation of the dissolution from entrapped nonaqueous phase liquids (NAPLs) in fractures is essential as we attempt to understand and predict the fate of NAPLs present in fractured rock systems. Eight long-term dissolution experiments using 1,1,1-trichloroethane and trichloroethylene were conducted in two laboratory-scale dolomitic limestone variable aperture fractures under various cond...

متن کامل

Interphase mass transfer in variable aperture fractures: Controlling parameters and proposed constitutive relationships

[1] Interphase mass transfer in variable aperture fractures occurs in many problems where two immiscible fluids are present, such as dissolution of dense nonaqueous phase liquids into groundwater, dissolution of CO2 in deep saline aquifers, and evaporation of trapped water by flowing gas during natural gas production. Typically, one fluid is entrapped by capillary forces and resides in immobili...

متن کامل

Numerical Investigation of Island Effects on Depth Averaged Fluctuating Flow in the Persian Gulf

In the present paper simulation of tidal currents on three-dimensional geometry of the Persian Gulf is performed by the solution of the depth averaged hydrodynamics equations. The numerical solution was applied on two types of discritized simulation domain (Persian Gulf); with and without major islands. The hydrodynamic model utilized in this work is formed by equations of continuity and motion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007